

torchgan

The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy to use API which can be used to train popular gans as well as develop newer variants.

Getting Started

	Installation
	Pip Installation

	Conda Installation

	Install from Source

	Contributing

	Starter Example

Documentation

	1. torchgan.losses
	1.1. Loss

	1.2. Least Squares Loss

	1.3. Minimax Loss

	1.4. Boundary Equilibrium Loss

	1.5. Energy Based Loss

	1.6. Wasserstein Loss

	1.7. Mutual Information Penalty

	2. torchgan.metrics
	2.1. Metric

	2.2. Classifier Score

	3. torchgan.models
	3.1. GAN

	3.2. DCGAN

	3.3. Conditional GAN

	3.4. InfoGAN

	4. torchgan.trainer

Examples

	1. Example

Installation

Follow the following instructions to set up torchgan. Torchgan is tested and known to work on major linux distrubutions. If you face any problem with other operating systems feel free to file an issue.

Pip Installation

Installing via pip is currently unavailable. It will be available soon.

Conda Installation

Installing via conda is currently unavailable. It will be available once we are at v0.1

Install from Source

$ git clone https://github.com/torchgan/torchgan
$ cd torchgan
$ python setup.py install

Contributing

Contributions are always welcome. Follow the following guidelines while contributing :-

	If contributing a new feature, first open an issue on github. Describe the feature and provide some references. Also clarify why it shall be a good feature to have in the core library and not simply as a representative example.

	If submitting a bug fix, file the issue on github. Make sure the bug exists on the master.

	If submitting a new model, open a PR in the model zoo repository. Follow the contribution guidelines present there.

	Also fell free to submit documentation changes.

For you PR to be merged it must strictly adhere to the style guidelines, we use flake8 for that purpose. Also all existing tests must pass. No breaking changes will be accepted unless when we are making a change in the major version. Also be sure to add tests and documentation for any code that you submit.

Starter Example

As a starter example we will try to train a DCGAN on CIFAR-10. DCGAN is in-built into to the library, but let it not fool you into believing that we can only use this package for some fixed limited tasks. This library is fully customizable. For that have a look at the Examples.

But for now let us just use this as a small demo example

First we import the necessary files

import torch
import torchvision
from torch.optim import Adam
import torch.utils.data as data
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torchgan import *
from torchgan.models import SmallDCGANGenerator, SmallDCGANDiscriminator
from torchgan.losses import MinimaxGeneratorLoss, MinimaxDiscriminatorLoss,
from torchgan.trainer import Trainer

Now write a function which returns the data loader for CIFAR10.

def cifar10_dataloader():
 train_dataset = dsets.CIFAR10(root='/data/avikpal', train=True,
 transform=transforms.Compose([transforms.ToTensor(),
 transforms.Normalize(mean = (0.5, 0.5, 0.5), std = (0.5, 0.5, 0.5))]),
 download=True)
 train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
 return train_loader

Now lets us create the Trainer object and pass the data loader to it.

trainer = Trainer(SmallDCGANGenerator(out_channels=3, step_channels=16),
 SmallDCGANDiscriminator(in_channels=3, step_channels=16),
 Adam, Adam, [MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()],
 sample_size=64, epochs=50,
 optimizer_generator_options={"lr": 0.0002, "betas": (0.5, 0.999)},
 optimizer_discriminator_options={"lr": 0.0002, "betas": (0.5, 0.999)})

trainer(cifar10_dataloader())

Now log into tensorboard and visualize the training process.

1. torchgan.losses

This losses subpackage is a collection of popular loss functions used
in the training of GANS. Currently the following losses are supported:

	Loss

	Least Squares Loss

	Minimax Loss

	Boundary Equilibrium Loss

	Energy Based Loss

	Wasserstein Loss

	Mutual Information Penalty

These losses are tested with the current available trainers. So if you need
to implement you custom loss for using with the trainer it is recommended
that you subclass the GeneratorLoss and DiscriminatorLoss

1.1. Loss

1.2. Least Squares Loss

1.3. Minimax Loss

1.4. Boundary Equilibrium Loss

1.5. Energy Based Loss

1.6. Wasserstein Loss

1.7. Mutual Information Penalty

2. torchgan.metrics

This subpackage provides various metrics that are available to judge the
performance of GANs. Currently available metrics are:

	Metric

	Classifier Score

2.1. Metric

2.2. Classifier Score

3. torchgan.models

This models subpackage is a collection of popular GAN architectures. It has
the support for existing architectures and provides a base class for
extending to any form of new architecture. Currently the following models
are supported:

	GAN

	DCGAN

	Conditional GAN

	InfoGAN

You can construct a new model by simply calling its constructor.

>>> import torchgan.models as models
>>> dcgan_discriminator = DCGANDiscriminator()
>>> dcgan_generator = DCGANGenerator()

All models follow the same structure. There are additional customization options.
Look into the individual documentation for such capabilities.

3.1. GAN

3.2. DCGAN

3.3. Conditional GAN

3.4. InfoGAN

4. torchgan.trainer

This subpackage provides ability to perform end to end training capabilities of
the Generator and Discriminator models. It provides strong visualization
capabilities using tensorboardX [https://github.com/lanpa/tensorboardX]. In most cases you will need
to overwrite the generator_train_iter() and discriminator_train_iter().

Currently supported Trainers include:

1. Example

The examples are not ready currently. But rest assured it will be fixed soon.

For now head over to the model-zoo repo for seeing how to write your own models.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 torchgan

 		
 Installation

 		
 Pip Installation

 		
 Conda Installation

 		
 Install from Source

 		
 Contributing

 		
 Starter Example

 		
 torchgan.losses

 		
 Loss

 		
 Least Squares Loss

 		
 Minimax Loss

 		
 Boundary Equilibrium Loss

 		
 Energy Based Loss

 		
 Wasserstein Loss

 		
 Mutual Information Penalty

 		
 torchgan.metrics

 		
 Metric

 		
 Classifier Score

 		
 torchgan.models

 		
 GAN

 		
 DCGAN

 		
 Conditional GAN

 		
 InfoGAN

 		
 torchgan.trainer

 		
 Example

_static/up.png

_static/up-pressed.png

