
torchgan Documentation
Release 0.0.1

Avik Pal and Aniket Das

Dec 19, 2018

Getting Started

1 Installation 3
1.1 Pip Installation . 3
1.2 Conda Installation . 3
1.3 Install from Source . 3

2 Contributing 5

3 Starter Example 7

4 torchgan.losses 9
4.1 Loss . 10
4.2 Least Squares Loss . 10
4.3 Minimax Loss . 10
4.4 Boundary Equilibrium Loss . 10
4.5 Energy Based Loss . 10
4.6 Wasserstein Loss . 10
4.7 Mutual Information Penalty . 10

5 torchgan.metrics 11
5.1 Metric . 11
5.2 Classifier Score . 11

6 torchgan.models 13
6.1 GAN . 13
6.2 DCGAN . 13
6.3 Conditional GAN . 13
6.4 InfoGAN . 13

7 torchgan.trainer 15

8 Example 17

i

ii

torchgan Documentation, Release 0.0.1

The torchgan package consists of various generative adversarial networks and utilities that have been found useful
in training them. This package provides an easy to use API which can be used to train popular gans as well as develop
newer variants.

Getting Started 1

torchgan Documentation, Release 0.0.1

2 Getting Started

CHAPTER 1

Installation

Follow the following instructions to set up torchgan. Torchgan is tested and known to work on major linux distrubu-
tions. If you face any problem with other operating systems feel free to file an issue.

1.1 Pip Installation

Installing via pip is currently unavailable. It will be available soon.

1.2 Conda Installation

Installing via conda is currently unavailable. It will be available once we are at v0.1

1.3 Install from Source

$ git clone https://github.com/torchgan/torchgan
$ cd torchgan
$ python setup.py install

3

torchgan Documentation, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

Contributing

Contributions are always welcome. Follow the following guidelines while contributing :-

1. If contributing a new feature, first open an issue on github. Describe the feature and provide some references.
Also clarify why it shall be a good feature to have in the core library and not simply as a representative example.

2. If submitting a bug fix, file the issue on github. Make sure the bug exists on the master.

3. If submitting a new model, open a PR in the model zoo repository. Follow the contribution guidelines present
there.

4. Also fell free to submit documentation changes.

For you PR to be merged it must strictly adhere to the style guidelines, we use flake8 for that purpose. Also all existing
tests must pass. No breaking changes will be accepted unless when we are making a change in the major version. Also
be sure to add tests and documentation for any code that you submit.

5

torchgan Documentation, Release 0.0.1

6 Chapter 2. Contributing

CHAPTER 3

Starter Example

As a starter example we will try to train a DCGAN on CIFAR-10. DCGAN is in-built into to the library, but let
it not fool you into believing that we can only use this package for some fixed limited tasks. This library is fully
customizable. For that have a look at the Examples.

But for now let us just use this as a small demo example

First we import the necessary files

import torch
import torchvision
from torch.optim import Adam
import torch.utils.data as data
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torchgan import *
from torchgan.models import SmallDCGANGenerator, SmallDCGANDiscriminator
from torchgan.losses import MinimaxGeneratorLoss, MinimaxDiscriminatorLoss,
from torchgan.trainer import Trainer

Now write a function which returns the data loader for CIFAR10.

def cifar10_dataloader():
train_dataset = dsets.CIFAR10(root='/data/avikpal', train=True,

transform=transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean = (0.5, 0.5, 0.5), std

→˓= (0.5, 0.5, 0.5))]),
download=True)

train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
return train_loader

Now lets us create the Trainer object and pass the data loader to it.

trainer = Trainer(SmallDCGANGenerator(out_channels=3, step_channels=16),
SmallDCGANDiscriminator(in_channels=3, step_channels=16),
Adam, Adam, [MinimaxGeneratorLoss(), MinimaxDiscriminatorLoss()],

(continues on next page)

7

torchgan Documentation, Release 0.0.1

(continued from previous page)

sample_size=64, epochs=50,
optimizer_generator_options={"lr": 0.0002, "betas": (0.5, 0.999)},
optimizer_discriminator_options={"lr": 0.0002, "betas": (0.5, 0.

→˓999)})

trainer(cifar10_dataloader())

Now log into tensorboard and visualize the training process.

8 Chapter 3. Starter Example

CHAPTER 4

torchgan.losses

This losses subpackage is a collection of popular loss functions used in the training of GANS. Currently the following
losses are supported:

• Loss

• Least Squares Loss

• Minimax Loss

• Boundary Equilibrium Loss

• Energy Based Loss

• Wasserstein Loss

• Mutual Information Penalty

These losses are tested with the current available trainers. So if you need to implement you custom loss for using with
the trainer it is recommended that you subclass the GeneratorLoss and DiscriminatorLoss

9

torchgan Documentation, Release 0.0.1

4.1 Loss

4.2 Least Squares Loss

4.3 Minimax Loss

4.4 Boundary Equilibrium Loss

4.5 Energy Based Loss

4.6 Wasserstein Loss

4.7 Mutual Information Penalty

10 Chapter 4. torchgan.losses

CHAPTER 5

torchgan.metrics

This subpackage provides various metrics that are available to judge the performance of GANs. Currently available
metrics are:

• Metric

• Classifier Score

5.1 Metric

5.2 Classifier Score

11

torchgan Documentation, Release 0.0.1

12 Chapter 5. torchgan.metrics

CHAPTER 6

torchgan.models

This models subpackage is a collection of popular GAN architectures. It has the support for existing architectures and
provides a base class for extending to any form of new architecture. Currently the following models are supported:

• GAN

• DCGAN

• Conditional GAN

• InfoGAN

You can construct a new model by simply calling its constructor.

>>> import torchgan.models as models
>>> dcgan_discriminator = DCGANDiscriminator()
>>> dcgan_generator = DCGANGenerator()

All models follow the same structure. There are additional customization options. Look into the individual documen-
tation for such capabilities.

6.1 GAN

6.2 DCGAN

6.3 Conditional GAN

6.4 InfoGAN

13

torchgan Documentation, Release 0.0.1

14 Chapter 6. torchgan.models

CHAPTER 7

torchgan.trainer

This subpackage provides ability to perform end to end training capabilities of the Generator and Discriminator mod-
els. It provides strong visualization capabilities using tensorboardX. In most cases you will need to overwrite the
generator_train_iter() and discriminator_train_iter().

Currently supported Trainers include:

15

https://github.com/lanpa/tensorboardX

torchgan Documentation, Release 0.0.1

16 Chapter 7. torchgan.trainer

CHAPTER 8

Example

The examples are not ready currently. But rest assured it will be fixed soon.

For now head over to the model-zoo repo for seeing how to write your own models.

17

	Installation
	Pip Installation
	Conda Installation
	Install from Source

	Contributing
	Starter Example
	torchgan.losses
	Loss
	Least Squares Loss
	Minimax Loss
	Boundary Equilibrium Loss
	Energy Based Loss
	Wasserstein Loss
	Mutual Information Penalty

	torchgan.metrics
	Metric
	Classifier Score

	torchgan.models
	GAN
	DCGAN
	Conditional GAN
	InfoGAN

	torchgan.trainer
	Example

